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1 Introduction

In large-scale applications, double auction prediction markets have proven successful at predicting

future outcomes. The Iowa Electronic Market and the TradeSports-InTrade exchanges have out-

performed national polls in predicting winners of political elections (Berg et al., 2008; Wolfers and

Zitzewitz, 2004), as did an underground political betting market in the late nineteenth and early

twentieth centuries (Rhode and Strumpf, 2004). Even markets with ‘play’ money incentives such

as the Hollywood Stock Exchange and the NewsFutures World News Exchange perform as well as

real-money exchanges in predictive accuracy (Servan-Schreiber et al., 2004; Rosenbloom and Notz,

2006).1

These successes in large-scale applications have led many large corporations—including Google,

Hewlett-Packard and Intel—to adopt standard double auction prediction markets for smaller-scale

internal applications such as predicting future sales volumes of a particular product (Chen and Plott,

2002; Hopman, 2007; Cowgill et al., 2009).2 It is not obvious, however, that the successes observed

in large-scale settings will extend to most applications within corporations. Corporate prediction

markets will involve far fewer traders, and they are likely to be used to address far more complex

problems than those addressed in the relatively simple environments where the double auction

mechanism has performed well. Management may want to collect information on variables that are

correlated along several dimensions, such as demand for related products or costs across production

units. Although standard double auction markets should be capable of aggregating this information

in theory, it may be difficult in practice when traders face cognitive constraints and uncertainty

about the rationality of others. These problems are exacerbated by the use of a relatively small

numbers of traders since individuals may have market power that prevents convergence to the

perfectly competitive outcome and therefore hinders the potential for information aggregation. In

short, the assumptions of rational expectations and perfectly competitive markets seem at odds

with the corporate environments where these markets are now being applied.

Given these potential difficulties there may be alternative information aggregation mechanisms

that would outperform the standard double auction prediction market in smaller-scale settings with

complex or dispersed information. For example, a variant of the Delphi method—where informed

parties make predictions, learn each others’ predictions, and then revise their own predictions—

could be used to aggregate individuals’ beliefs or private information, or a parimutuel-style betting

market could be run to estimate the odds of certain future events.

In this paper we employ a behavioral mechanism design methodology, using laboratory exper-

iments to test the performance of the double auction mechanism in environments with a small

number of traders (we use groups of only three traders in each mechanism) and complex informa-

1Rosenbloom and Notz (2006) do find that TradeSports significantly out-performs NewsFutures for some bundles
of commodities and with enough data, but most tests cannot reject the null hypothesis of equal accuracy.

2Cowgill et al. (2009) identify at least twenty-one sizeable corporations that have used prediction mechanisms.
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tion structures. We extend our analysis by comparing market performance in an environment with

a moderately complex information structure with only one true-false event to a second environment

with a highly complex information structure featuring three correlated true-false events. We then

compare the double auction market’s performance in these environments to the performances of

three alternative mechanisms for aggregating information. Specifically, we compare the standard

double auction mechanism to an iterated polling mechanism, a parimutuel betting mechanism, and

a synthetic ‘market scoring rule’ developed by Hanson (2003). By exploring the performance of

these mechanisms in the laboratory we can gain an understanding about the domains on which

each succeeds or fails and we can also acquire some insight into the reasons why some mechanisms

out-perform others by understanding how agents’ behavior is affected by the details of the mech-

anism. Ultimately, insights such as these serve as inputs into the ‘behavioral’ mechanism design

process, providing guidance to practitioners hoping to design information aggregation mechanisms

for use in these complex and small-scale settings.

Our choice of three participants per market serves to represent situations where thin markets,

strategic interactions, and informationally large traders are significant concerns. Even relatively

small real-world applications would likely operate with more than three traders, but such markets

face a wide set of other complications that do not arise in the lab but could also contribute to these

problems. Additionally, since it is well established that double auction markets perform well when

there are many informationally small traders, the use of an extremely small market allows us to

evaluate whether there is some point below which the standard double auction prediction market

breaks down and is surpassed by an alternative mechanism.

We find that the double auction market mechanism performs relatively well in an environment

with a simple information structure involving one true-false event. In contrast, when the informa-

tion structure becomes complex—with three correlated events and eight securities—the iterative

poll performs the best and the standard double auction the worst. Thus, we find strong support

for the claim that the complexity of the environment interacts with the details of the mechanism.

For example, traders in the double auction with eight securities tend to focus attention on a small

subset of the eight markets, causing severe mispricing in the remaining markets. The iterated poll

avoids this issue by requiring players to announce beliefs about all eight states of the world simul-

taneously. In this way the design of the mechanism can be used to overcome natural behavioral

biases that hinder information aggregation.

Our results suggest the following guidance for practitioners: In simple settings with a large

number of traders relative to the number of items being predicted we suggest using the standard

double auction mechanism. When the number of items being predicted is large, when the predicted

events may be correlated, or when the number of traders is small we suggest the incentivized iterated

poll instead. For example, a highly specialized firm seeking to project sales of its primary product

should use a standard double auction, even in the face of concerns about limited participation
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and strategic trading. A more diversified firm seeking to evaluate expected sales for potentially

complementary (or substitutable) products should consider an iterative polling mechanism instead,

particularly when the number of informed traders is small. One downside of the iterated poll is

that it requires subsidy payments from the institution running the mechanism; the size of these

subsidies is limited, however, since we suggest using this mechanism only when the number of

traders is relatively small. For larger environments the unsubsidized double auction mechanism is

preferable. The parimutuel mechanism is less desirable because it appears to suffer from no-trade

outcomes where agents prefer to opt out of the mechanism entirely, as is predicted by the no-trade

theorem of Milgrom and Stokey (1982). We do not suggest the market scoring rule (MSR) because it

tends to suffer from informational ‘mirages’ where the mechanism leans toward completely incorrect

predictions.

Given that our experiment represents a ‘stress test’ using only three traders, we demonstrate the

possibility that the performance of the double auction mechanism can be dominated by alternative

mechanisms. The exact conditions under which the double auction outperforms the poll (or vice-

versa) are not known, and we hesitate to recommend the use of laboratory experiments to test such

a question since fine details of the real-world environment that are absent in the lab would blur

such conclusions. Our recommendations are a bit more coarse; managers should use the double

auction mechanism to answer simple questions about broad, aggregate measures of performance or

the likelihood of success of individual projects or products, while they will be better served by using

the iterated poll when detailed information is needed about complicated and interrelated outcomes,

like sales of correlated products or relative performance across divisions.

We follow our main results on mechanism performance with an analysis of five behavioral

observations that we believe are related to the failure of the market mechanism and the success of the

iterated poll in the complex setting. First, we see several apparent attempts at market manipulation

in the double auction mechanism and in the parimutuel, but very few in the iterated poll and MSR.

This is expected in the iterated poll; all players receive the same earnings and therefore have no

clear incentive to manipulate their opponents’ information. Second, total payments in the poll

and MSR are subsidized by the mechanism designer, so all traders have an incentive to participate

actively. Third, traders in the market appear to focus attention on only a subset of the securities—a

heuristic that is impossible in the poll since it requires each trader to submit an entire probability

distribution. Finally, an aberrant or confused trader can significantly affect final outcomes in the

market, parimutuel, or MSR, but not in the poll because the poll takes the average of traders’

reports as the predictive distribution.

These five observations allow us to extrapolate our results beyond the four mechanisms tested

and to guide the design of future mechanisms. For example, a designer of other mechanisms for

information aggregation should consider those with aligned incentives, subsidized total payments (if

feasible), a focus on entire probability distributions, and minimal reliance on any one individual’s
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report. Our results also inform economic theory: theories of market equilibration should take into

account the tendency for traders to manipulate others or to focus attention (or coordinate) on a

subset of available markets. As such theories are developed and refined they could then be used to

inform the design of additional mechanisms.

This paper extends past work on market efficiency and information aggregation. The number of

traders in the market is often cited as a factor that affects the degree of efficiency and information

aggregation, though the effect likely depends on the proportion of traders who hold valuable infor-

mation. Clearly, the presence of additional informed traders increases the amount of information

that is available to aggregate, but the effect of additional noise traders with no private informa-

tion is unclear. DeLong et al. (1990) argue that noise traders’ uninformed trades can reduce the

informational content of market prices and damage market efficiency, while Kyle (1985) shows how

noise traders can provide profit opportunities for informed traders, inducing them to make larger

trades and invest more resources—physical or cognitive—in the acquisition and integration of in-

formation. Empirical evidence on the issue is mixed; volume is positively correlated with accuracy

in the Iowa Electronic Markets (Berg et al., 2008) but also leads to more pricing anomalies and

slower convergence to terminal cash flows in TradeSports markets (Tetlock, 2008). Experimental

results are similarly mixed: Bloomfield et al. (2006) observe lower informational efficiency in the

presence of uninformed traders while Joel Grus and John Ledyard (see Ledyard, 2005) observe

greater aggregation when an automated noise trader is present.

A second set of factors affecting information aggregation concerns the complexity of the infor-

mation and dividend structures in the market. These issues are amenable to laboratory studies

given the difficulty in observing and controlling private information in field settings. Early experi-

mental studies by Plott and Sunder (1988) find convergence and efficiency if simple Arrow-Debreu

securities are used that pay a fixed dividend if and only if their associated state occurs, the struc-

ture of private information is relatively simple (agents are told which state is not true), and there

is no aggregate uncertainty (combining all private signals reveals the true state perfectly). This

result is replicated for a ten-state environment with less informative private signals (draws from

an urn) and aggregate uncertainty by Plott (2000); however, this replication uses approximately

ninety subjects whereas the earlier laboratory experiments typically include around twelve or six-

teen subjects. Markets with more complicated ‘tiered’ securities (where dividend payments are

state-dependent and vary in magnitude across trader types) generate mixed results; having some

traders know the state of the world perfectly, common knowledge of the dividend structures for

all types, market experience, and a small number of tiered securities all facilitate convergence and

efficiency (Plott and Sunder, 1982, 1988; Forsythe and Lundholm, 1990; O’Brien and Srivastava,

1991).

From 2001–2003, John Ledyard, Robin Hanson, David Porter, and others worked to implement a

prediction mechanism to forecast political and economic instability in the Middle East (see Hanson,
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2007 for details). The state space for this application becomes prohibitively large for any reasonable

question of interest; if one wants to predict which of eight countries will experience GDP growth next

quarter then 28 = 256 separate securities are needed to capture the possibility that the likelihood

of growth in each country depends on growth in the others. Unless the number of traders is

large then the simple act of equilibrating all 256 markets (even with complete information) seems

overwhelming.3 In this complex environment Ledyard et al. (2009) test the performance of a

double auction that uses only eight states—effectively ignoring the cross-country correlations—

against five other mechanisms that used all 256 states: a combinatorial call market that allowed

for trading of events like ‘X and Y ’ or ‘X given Y ’; an individual proper scoring rule; a linear

opinion pool; a logarithmic opinion pool; and the market scoring rule (MSR) developed by Hanson

(2003), which is described below. Using groups of six subjects, the MSR and the opinion pools gave

predictions closest to the full-information posterior. The eight-state double auction performed the

worst, at least partially because they were necessarily handicapped by their inability to capture

cross-country correlations. In a simpler environment with 23 = 8 states and only three traders the

MSR is uniquely the best mechanism.

The current paper follows the work of Ledyard et al. (2009): We compare the double auction

mechanism to three other mechanisms—an iterated poll, the pari-mutuel mechanism, and the

MSR—in a relatively simple environment with only two states and a complex environment with

23 = 8 states, each with only three traders per group. The latter environment is sufficiently large

relative to the number of traders that we expect equilibration to be hindered by market liquidity

shortages and subjects’ cognitive limitations, but not so large that a simplification of the state

space is necessary for the mechanism to operate.

Past studies have examined each of the mechanisms we test in different environments. McKelvey

and Page (1990) study an iterated poll where each individual is paid on the accuracy of their own

reports instead of the accuracy of the average report. This iterated poll fully aggregates all private

information in theory, but falls somewhat short of that target in the laboratory. Chen et al. (2001)

also show how a poll out-performs a repeated call market with Arrow-Debreu securities as well as the

information of the best-informed individual.4 The pari-mutuel mechanism—used widely in horse-

race wagering—has similar theoretical properties to the double auction market: information should

fully aggregate if trade occurs, but fully rational risk-averse traders should never have an incentive

to trade. Plott et al. (2003) find that ‘prices’ converge to the rational expectations prediction in

a simple environment, but a simple model of trading based on private information alone predicts

behavior better in more complex settings. In the field, Thaler and Ziembda (1988) show that

3Another concern is market manipulation by traders with an interest in the prediction generated by the market.
Hanson et al. (2006) show in an experiment, however, that the accuracy of outside observers who use market prices to
make predictions is not affected by the presence of these biased traders; Hanson and Oprea (2009) confirm theoretically
that manipulators may play the same role noise traders in Kyle (1985) and will therefore increase market efficiency.

4Chen et al. (2001) also adjust the aggregation of individual reports into a single posterior to account for subjects’
risk aversion, though their adjustment does not significantly improve accuracy.
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pari-mutuels do a reasonably good job of predicting horse racing outcomes, though betters tend

to over-bet the unlikely (‘long-shot’) horses.5 Theoretically, the market scoring rule (MSR) fully

aggregates information if traders are risk averse and not forward-looking, but does provide some

incentives for traders to misrepresent their information early to take advantage of others’ incorrect

beliefs later (see Chen et al., 2007 and Sami and Nikolova, 2007 for two analyses of this mechanism).

To our knowledge, only Ledyard et al. (2009)—who find that the MSR performs the best among

their mechanisms—and this paper have tested the MSR in the laboratory.

We formally introduce the environments and mechanisms used in our study in the following

section. Section 3 details the experimental design. Results appear in Section 4, followed by analyses

of our five observations in 5. We conclude with a discussion in Section 6.

2 Environments and Mechanisms

We consider an information aggregation problem where the state of the world consists of two

dimensions. The first dimension represents some unobservable factor whose value impacts the

realization in the second dimension. For example, the underlying monetary policy of a central

bank (the first dimension) will affect whether or not the bank chooses to raise interest rates each

quarter (the second dimension). Monetary policy is not directly observable, but interest rate

movements are. In this setting traders in a double auction can use the bank’s past interest rate

changes to infer its monetary policy and, in turn, predict upcoming interest rate movements. If

a collection of traders have different information about past interest rate movements (and the

underlying conditions of the economy at the time of those movements) then a double auction or

other information aggregation mechanism can be used to generate more reliable predictions about

the probability of future rate increases.

In the laboratory environment we represent this inference problem by choosing one of two

biased coins (the underlying first dimension) and then flipping the chosen coin one time (the

second dimension that agents try to predict). The goal of an information aggregation mechanism

is to predict the probability that the flip will land ‘heads’. Subjects privately observe sample flips

of the chosen coin, try to infer which biased coin was chosen, and then predict the probability that

the one ‘true’ flip will be heads. The goal of the mechanism designer is to combine these individual

predictions into one aggregated prediction that incorporates all subjects’ private information.6

Formally, the unknown true state of the world in our experimental environment is given by

(θ, ω) ∈ Θ×Ω where θ (the coin) is drawn according to the distribution f(θ) and ω (the outcome of

the coin flip) is drawn according to the conditional distribution f(ω|θ). Each agent i ∈ I privately

5Camerer (1998) attempts to manipulate actual horse races by placing and canceling large wagers, but the bettors
return the odds to the ‘correct’ values relatively quickly. Thus, the effects of manipulations are short-lived.

6Our ‘sterile’ version of the field setting allows us to test the ability of mechanisms to aggregate information
in an (essentially) context-free environment. Our results therefore provide a baseline prediction about the relative
performance of various mechanisms for use in any related field application.
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observes Ki signals (sample coin flips) of ω, which we denote by ω̂i = (ω̂i
1, . . . , ω̂

i
Ki

) ∈ ΩKi. Each ω̂i
k

is drawn according to f(ω|θ), so signals provide independent, unbiased information about θ that

can then be used to predict the true value of ω.

Given the signal ω̂i and the priors f(θ) and f(ω|θ), agent i forms a posterior belief q(θ|ω̂i) over

Θ using Bayes’s rule. For simplicity, we denote this posterior on Θ by qi(θ). From this, i forms a

posterior over Ω given by pi(ω) =
∑

θ′∈Θ
f(ω|θ′)qi(θ′).

The goal of the mechanism designer is to aggregate the beliefs of the individual agents. The most

accurate posterior the designer could hold in this setting would be that which she would form if she

had full information, meaning she observes every agent’s private signal. Letting ω̂ = (ω̂1, . . . , ω̂I),

we define qF (θ) := q(θ|ω̂), which leads to the full information posterior on Ω given by

pF (ω) =
∑

θ′∈Θ

f(ω|θ′)qF (θ′).

To evaluate the performance of a given mechanism we compare the belief distribution over

Ω implied by behavior in the mechanism to the full information posterior pF . Abstracting away

from the details, we think of mechanisms as producing a sequence of distributions over Ω denoted

by {ht}
T
t=0. Each distribution ht represents the posterior at time t ∈ {0, . . . , T} implied by the

messages sent by the players up through time t. Thus, h0 corresponds to the prior and we refer to

hT as the output distribution of the mechanism. At any point t we call ht the running posterior

at time t. After observing the mechanism, the mechanism designer takes hT as his posterior over

Ω. Full information aggregation occurs whenever the mechanism produces an output distribution

equal to the full information posterior, or hT ≡ pF . When Ω is finite we can measure the ‘error’

of the output distribution, relative to the full information posterior, by the normalized Euclidean

norm7

‖hT , pF ‖ρ := |Ω|1/2

(

∑

ω∈Ω

|hT (ω) − pF (ω)|2

)1/2

. (1)

Our primary measure of the success of a mechanism is the average (or expected) size of this distance.

Environments

In our experiments we compare two environments that vary in the size of the state space and

complexity of the information structure. The simpler environment is described above; one of two

biased coins are chosen and, upon flipping, the chosen coin either comes up heads or tails. Since

there are two flip outcomes we refer to this as the ‘two-state’ environment. In the more complex

environment three biased and correlated coins are randomly ordered and then all three are flipped

7The normalization by |Ω|1/2 sets the norm of the centroid vector (1/|Ω|, . . . , 1/|Ω|) equal to one regardless of
the size of Ω. This allows for casual comparison of distances between spaces of different dimension, though such
comparisons should be made very cautiously.
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θ f(θ) f(H|θ) f(T |θ)

X 1/3 .2 .8
Y 2/3 .4 .6

Table 1: The distribution f for the 2-state experiments.

in the chosen order. There are eight possible outcomes of the flip of three coins, so we refer to this

as the ‘eight-state’ environment.8 The two environments are described formally below. Recall that

in both environments we use only three traders.

Two-State Environment

In the two-state design, Θ = {X,Y } and Ω = {H,T} with f(θ) and f(ω|θ) given in Table 1. The

interpretation is that one of two biased coins (X or Y ) is to be randomly selected and flipped one

time. The X coin is selected with probability 1/3 and comes up heads with probability 0.20. The

Y coin is selected with probability 2/3 and comes up heads with probability 0.40. Agents observe

neither the chosen coin (θ) nor the outcome of the flip (ω); instead, each agent observes sample flips

of the chosen coin (ω̂i ∈ ΩKi), uses this information to form beliefs over which coin was selected

(X or Y ), and then forms a probability estimate that the one ‘true’ coin flip is heads (pi(H)).

Eight-State Environment

In the eight-state design there are three coins, X, Y , and Z, placed in a random order such as YZX

or ZYX. The set Θ contains the six possible orderings, each of which is equally likely a priori. Once

an ordering is chosen, the three coins are then flipped in that order. The result is a triple of heads

and tails, such as HHT or THT, where the first character corresponds to the flip of the first coin in

the order, the second character corresponds the second coin, and so on. The set Ω contains all eight

possible flip outcomes. Agents do not know the true outcome of the flip of the three coins (ω) nor

the actual ordering of the coins (θ); instead, they observe sample flips of the chosen coin ordering

(ω̂i ∈ ΩKi), use this information to form beliefs over which of the six orderings was selected, and

then form beliefs over the eight possible outcomes of the ‘true’ coin flips (pi(HHT), pi(THT), etc.).

The X coin lands heads with probability 0.20 and the Z coin lands heads with probability 0.40.

The Y coin is different; its flip matches the flip of the X coin with probability 2/3 and differs from

X with probability 1/3. The values of f(θ) and f(ω|θ) for this environment are given in Table 2.

Note that, unconditionally, the Y coin lands heads with probability 0.40, making it indistin-

guishable from the Z coin if one ignores the correlation between coins. In other words, an agent

trying to infer the ordering of the three coins based on a sample of flips must first identify the X

8Technically these names are misnomers since the true state spaces (Θ × Ω) are of size 2 × 2 = 4 and 6 × 8 = 48,
respectively.
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θ f(θ) TTT TTH THT THH HTT HTH HHT HHH

XY Z 1/6 .320 .213̄ .160 .106̄ .040 .026̄ .080 .053̄
XZY 1/6 .320 .160 .213̄ .106̄ .040 .080 .026̄ .053̄
Y XZ 1/6 .320 .213̄ .040 .026̄ .160 .106̄ .080 .053̄
Y ZX 1/6 .320 .040 .213̄ .026̄ .160 .080 .106̄ .053̄
ZXY 1/6 .320 .160 .040 .080 .213̄ .106̄ .026̄ .053̄
ZY X 1/6 .320 .040 .160 .080 .213̄ .026̄ .106̄ .053̄

Table 2: The distribution f for the 8-state experiments.

coin by its lower frequency of heads and then distinguish between the Y and Z coins by identifying

which is correlated with X. When each agent has a small number of sample flips this inference

problem is difficult and the value of each agent’s private information is small. This is the sense in

which the eight-state environment is considered more complex.

One real-world setting with a similar correlation structure is the conference championship struc-

ture used in many professional and collegiate sports. Here, coin X represents the event that Team

A beats Team B in the Western conference championship, coin Z represents the event that Team

C beats Team D in the Eastern conference championship, and coin Y represents the event that the

Western conference champion beats the Eastern conference champion in the final match-up. Clearly

coin Y depends on which teams actually advance to the final game; thus, Y will be correlated with

the other two coins. If probabilities were elicited for only the three games then this correlation

would not be captured; it takes a full set of 23 = 8 probabilities to capture this correlation.

Mechanisms

In any field application a mechanism’s performance—and, therefore, agents’ payoffs—depends on

the realized value of ω. Consequently, even mechanisms that fully aggregate information can

perform poorly when an unlikely true state happens to occur. In the controlled laboratory setting

one way to reduce this variation is to reward subjects based on the expected performance of the

mechanism given the true distribution f(ω|θ).9 In our experiments we generate an estimate of

f(ω|θ) using 500 draws of ω. Letting φ(ω) denote the fraction of the 500 draws that equals ω, the

empirical distribution φ serves as a close approximation to the true distribution f(ω|θ).10 Subjects

are then paid based on the expected performance of the mechanism given the distribution φ(ω).

This is explained in more detail with each mechanism.

In what follows we index the elements of Ω by s ∈ {1, . . . , S}. In the two-state environment

S = 2 and in the eight-state environment S = 8.

9This cannot be done in most field settings since θ is not observed.
10We chose to approximate f(ω|θ) using φ(ω) because the latter is constructed though an actual (computerized)

process; we expect that this makes it more understandable to subjects without a statistics background.
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Double Auction

The standard prediction market mechanism used widely in field applications is a double auction with

a complete set of Arrow-Debreu securities, henceforth referred to as the ‘double auction’ mechanism.

Here, S state-contingent securities (one for each ωs ∈ Ω) are traded in separate markets. Subjects

buy and sell each security in a standard computerized double auction format with an open book

where all bids and asks are public information. Traders are initially endowed with cash but no

assets; those who want to sell an asset do so by selling short and holding negative quantities. At

the end of the trading period each asset s is worth φ(ωs) experimental dollars. Traders who own

a positive quantity of asset s receive φ(ωs) experimental dollars per unit and traders who hold a

negative quantity of asset s pay φ(ωs) experimental dollars per unit.11

In a rational expectations equilibrium the asset prices reveal all private information. Under

certain assumptions about preferences these equilibrium prices will equal the full information pos-

terior probabilities.12 Thus, we set the mechanism output distribution equal to the vector of security

prices. In our experiment the prices of the securities are not forced to sum to one, but in our data

analysis we set all untraded security prices equal to the uniform distribution price of 1/|Ω| and

then proportionally adjust the prices of all traded securities so that the sum of all prices equals

one. This generates a well-defined probability distribution as the mechanism’s output.13

Since this mechanism is zero-sum, however, the no-trade theorem of Milgrom and Stokey (1982)

implies that we should not expect any trade in equilibrium with risk-averse agents. Whether or not

trade actually occurs and prices equilibrate to the full information posterior, however, depends on

the beliefs, preferences, and rationality of the traders.

Pari-mutuel Betting

In pari-mutuel betting traders buy ‘tickets’ or ‘bets’ on each of the S possible states. Tickets cost

one experimental dollar each and a trader can buy as many tickets of each type as he can afford

using his cash endowment. During the period the total number of tickets of each type that have

been purchased is displayed publicly. At the end of the period these totals are used to calculate

the payoff odds for each security. If Ts is the total quantity of state-s tickets purchased then the

payoff odds for state s are given by Os = (Ts/
∑

ω Tω)−1. Each state-s ticket is then redeemed

for Os · φ(ωs) experimental dollars. In other words, each ticket is worth the payoff odds times the

(approximated) true probability that state ωs occurs.

11In field applications the asset corresponding to the true state is worth one dollar and all other assets are worthless.
12See Manski (2006), Wolfers and Zitzewitz (2006), and Gjerstad (2004).
13We could, alternatively, set the prices of nontraded securities equal to zero when prices sum to more than one

and then proportionately adjust the prices of the traded securities, while distributing the residual probability over
the nontraded securities when the prices sum to less than one. This approach generates larger errors for the double
auction, and under this alternative the double auction performs worse than all other mechanisms at a very high
significance level.
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The total payoff across all tickets and individuals equals the sum of all purchases, making this a

zero-sum game. As in the double auction a no-trade theorem applies, so risk-averse agents should

not purchase tickets in an equilibrium with common knowledge of rationality. In the presence of

noise trading, however, rational traders may have an incentive to participate. It is certainly the

case that, once information has fully aggregated, rational, risk-averse agents will purchase tickets

to move the inverse of the payoff odds to the (common) posterior probabilities. In other words,

the fraction of total tickets outstanding that are state-s tickets should equal the state-s posterior

probability. For this reason we set the mechanism output probability of each state ω equal to

the fraction of total tickets outstanding that are state-ω tickets. Whether or not information will

actually aggregate, however, is a question for the laboratory.

Iterative Polls

Iterative polls—an incentivized version of the “Delphi method”—are perhaps the simplest and

most direct information aggregation mechanism. Subjects are asked to report simultaneously a

probability distribution over Ω. The reports are averaged across subjects (by taking the arithmetic

mean of the reports for each state) to generate an ‘aggregated’ report. This aggregated report

is shown to all subjects, who are then asked to submit simultaneously a second distribution over

Ω. Subjects’ second reports will incorporate their own private information plus any information

inferred from the average of the first reports. The average of these second reports is displayed, and

the process is repeated for a total of five reports. The fifth average report is then taken as the

output distribution of the mechanism.

All subjects are all paid identically based on the accuracy of the final report using a logarithmic

scoring rule. Specifically, if hT (ωs) is the final average probability report then for each state ωs each

subject i is given ln(hT (ωs)) − ln(1/S) tickets. Thus, agents gain state-s tickets if hT (ωs) > 1/S

and lose state-s tickets if hT (ωs) < 1/S. Once the empirical frequency φ is revealed each state-s

ticket pays out φ(ωs) dollars. Since all agents receive the same payment the game is not zero-sum

and therefore must be subsidized by the mechanism designer.

The logarithmic scoring rule is incentive compatible (Selten, 1998), so any risk-neutral individual

acting in isolation would prefer to announce truthfully her beliefs over Ω. In the multiple-player

game there exist sequential equilibria in which full information aggregation occurs; thus, we take

the final average announcement to be the mechanism’s output distribution. One might conjecture

that any sequential equilibrium should feature full information aggregation since all players have

identical incentives, but in fact there exist ‘babbling’ equilibria in which full information aggregation

does not occur.14 Under risk neutrality the full information aggregation equilibria are Pareto

14In a ‘good’ equilibrium each player announces truthfully in the first round, all players use the first average report
to infer others’ information, then all players announce the full information posterior in rounds two through five,
ignoring any deviations by others. In a ‘babbling’ equilibrium all players submit random, meaningless announcements
in rounds one through four, ignore others’ announcements, and attempt to maximize their payoff in the final round;
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dominant, so the success of the mechanism depends on agents’ ability to coordinate on this payoff-

dominant outcome.

Market Scoring Rule

In the market scoring rule (MSR), a probability distribution h0 = (h0(ω1), . . . , h0(ωS)) is publicly

displayed at the beginning of each period; in our experiments, h0(ωs) = 1/S for each s. At any given

time t during the period, any trader may ‘move’ the current distribution ht to a new distribution,

ht+1. This is done simply by announcing the new distribution ht+1. When a trader makes such a

move he receives (or loses)

ln(ht+1(ωs)) − ln(ht(ωs)) (2)

state-s tickets for each s. Traders are given an initial endowment of tickets and cannot move ht

to some ht+1 if such a move would require surrendering more tickets of some state than the trader

currently holds. This prevents traders from moving probabilities arbitrarily close to zero since the

logarithm becomes infinitely negative for arbitrarily small probabilities.

During the period traders may move the probability distribution as many times as they like,

subject to the budget constraint. With each move, they gain and lose tickets appropriately. At the

end of the period each state-s ticket is worth φ(ωs) experimental dollars. Since summing equation

(2) over all t yields

ln(hT (ωs)) − ln(h0(ωs)),

the total change in ticket holdings depends only on the starting distribution h0 and the ending

distribution hT (intuitively, each trader is ‘buying out’ the position of the previous trader) The

final cash value of this difference must be subsidized (or collected) by the mechanism designer.

As in the iterated poll this mechanism uses the logarithmic scoring rule which is incentive

compatible for any risk neutral individual, meaning players will truthfully reveal their beliefs if they

do not expect to make any future moves. Thus, if it is common knowledge that each player’s final

move is in fact their last then each will fully reveal their beliefs in the final move and information

will fully aggregate in the final move of the period.15 For this reason we take the final move of the

period to be the output distribution of the mechanism.

If a player does expect to move again in the future then there may be an incentive to misrepre-

sent one’s information so that other players erroneously move the distribution away from the full

information posterior and the misrepresenting player can then earn profits by moving it back. In

our experiment players can make moves at any time during the five-minute window, so it is not

clear whether manipulations will persist through the final move or whether information will fully

aggregate at the end of the period. We test for evidence of manipulations in Section 4.

since no information was conveyed in the first four rounds, the final average report generically will not achieve full
information aggregation.

15This argument is based on the analysis of Chen et al. (2007); see also Sami and Nikolova (2007).
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3 Experimental Design

All experiments were run at the California Institute of Technology using undergraduate students

recruited via e-mail. Each period lasted 5 minutes and subjects earned an average of approximately

thirty dollars per session.

In each period subjects are publicly informed about the distribution f given in Tables 1 and 2,

so we take this as the common prior.16 A coin (or coin ordering) θ is chosen by the computer but

not revealed to the subjects. Instead, each subject is privately shown a unique sample of coin flips

of the chosen coin. The mechanism is then run and the output distribution is observed. After the

period ends traders are told the chosen coin and the distribution φ(ω) generated from 500 sample

flips of the chosen coin.17 Subjects’ total earnings are then augmented by their payment for the

period and the next period begins.

Following the standard practice in experimental economics, the framing of this experiment is

entirely neutral. States are described to subjects as ‘coins’ and ‘coin flips’. Real business contexts

may alter performance somewhat, but the neutral frame can be taken as a ‘baseline’ environment

against which all context-laden settings can be compared. Based on past evidence, we expect the

results from the neutral experiment to an unbiased predictor of real-world performance (see, for

example, Fréchette, 2009).

A 4 × 2 experimental design compares the four mechanisms described in Section 2 in both the

two-state and eight-state environments. Agents participate in groups of three and are matched

with the same group for the entire experiment. Each subject group participates in one mechanism

for eight periods followed by a different mechanism for eight periods. We use a crossover design in

which the ordering of mechanisms for one group is then reversed for another group. Each ordering

is run twice for a total of 16 experimental sessions.18 Table 3 lists the details of each session.

The MSR, pari-mutuel, and poll were all run manually. Subjects sat at desks and a spreadsheet

program was projected onto a screen at the front of the room. In the MSR and pari-mutuel

bids were submitted in a continuous-time, open-outcry manner. In each round of the poll subjects

privately and simultaneously submitted their announcements on paper. In all three mechanisms the

submitted bids or announcements were immediately entered into the spreadsheet and the current

market prices were automatically updated on the screen. The double auction was run using the

jMarkets software package. This software uses a visual interface, features an open book so all

traders can see outstanding bids and offers, and allows continuous-time trading.

In each mechanism after a period had ended players were shown the distribution of ‘true’ coin

flips, their payoffs, and then given a slip of paper containing their private information for the

following period. Subjects have access to standard calculators (but not payoff calculators specific

16Technically, the prior is common information but not necessarily common knowledge.
17All individual signals are independent and independent of the 500 flips used to determine φ(ω).
18We pair the pari-mutuel with the MSR and the double auction with the poll. This choice is arbitrary; what

matters is that for each pairing we run both orderings of that pairing to test for ordering or learning effects.
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Session No. of No. of Mechanism 1 Mechanism 2
Number States Agents (Periods 1–8) (Periods 9–16)

1 2 3 Pari-mutuel Market Scoring Rule
2 2 3 Pari-mutuel Market Scoring Rule
3 2 3 Market Scoring Rule Pari-mutuel
4 2 3 Market Scoring Rule Pari-mutuel
5 2 3 Double Auction Iterative Poll
6 2 3 Double Auction Iterative Poll
7 2 3 Iterative Poll Double Auction
8 2 3 Iterative Poll Double Auction
9 8 3 Pari-mutuel Market Scoring Rule
10 8 3 Pari-mutuel Market Scoring Rule
11 8 3 Market Scoring Rule Pari-mutuel
12 8 3 Market Scoring Rule Pari-mutuel
13 8 3 Double Auction Iterative Poll
14 8 3 Double Auction Iterative Poll
15 8 3 Iterative Poll Double Auction
16 8 3 Iterative Poll Double Auction

Table 3: The experimental design.

to these mechanisms), pencil, and paper throughout the experiment.

4 Results

The results are organized as follows: First we describe the four ways in which we measure the

performance (or failure) of each mechanism. We then show that behavior does not significantly

differ across periods and does not depend on whether a mechanism is presented first or second

within a given session, allowing us to aggregate results across periods and orderings and directly

compare the four mechanisms using our four performance measures.

Measures of Performance

Our primary measure of a mechanism’s performance is the average normalized Euclidean distance

between the mechanism’s output distribution hT and the full information posterior pF (see equation

1 above); this provides a simple measure of how accurate the mechanism designer’s posterior beliefs

are relative to the ideal case of full information aggregation.19

One might also be concerned with other properties of the mechanism’s performance. For exam-

ple, consider the no-trade theorem in the context of the double auction and pari-mutuel mechanisms.

19Other distance measures such as the Kullback and Leibler (1951) information criterion generate qualitatively
similar results.
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Figure 1: Mirages with (A) two states, and (B) more than two states. In (A), the mechanism
output h lies between the prior p0 and the probability associated with state θ1, while the posterior
implied by all private information (pFI) lies between the prior and the probability associated with
state θ2. In (B), the full information posterior pFI implies that states θ1, θ5, and θ6 are relatively
more likely than under the prior, while the mechanism output h would lead to the conclusion that
states θ2, θ3 and θ4 are more likely.

In a thin market devoid of noise traders, (weakly) risk-averse rational traders should (weakly) prefer

not to participate in either mechanism. If no trade occurs then the mechanism provides no value

to the designer since no new information is revealed. If the market were sufficiently thick then it

becomes more likely that noise traders will exist—or at least that rational traders believe that noise

traders exist—and so trade will occur and information will be revealed. In our experiments, how-

ever, groups contain only three agents so the logic of the no-trade theorem is particularly compelling

in this setting.

Worse than the no-trade outcome is a situation where the mechanism output is misleading. For

example, if a mechanism’s output distribution in the two-state environment indicates that heads

is less likely than previously expected when in fact the private information indicates that heads

is more likely to occur then the designer’s posterior is less accurate than the prior. This outcome

has been called a mirage in the existing literature (Camerer and Weigelt, 1991). In general, we

label an output distribution as a mirage if it lies in the opposite direction from the prior as the

full-information posterior. Formally, a mirage occurs when (pFI − p0) · (hT − p0) < 0, where p0

is the prior, hT is the output distribution, and pFI is the full-information posterior. Graphical

representations of a mirage (for both two- and eight-state environments) are provided in Figure 1.
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Figure 2: Bayes-inconsistent outcomes with (A) two states, and (B) more than two states. In
(A), θ2 represents the state where the probability of the outcome in question is highest, but the
mechanism output implies a posterior probability higher than the probability if θ2 was known for
certain to be the state. In (B), the mechanism output implies a posterior probability that cannot
be rationalized by any belief about the underlying state since the outcome lies outside the convex
hull of probabilities implied by each state.

A third possible failure of a mechanism is a situation where the output distribution cannot

be rationalized by Bayes’s rule. We label such outcomes as Bayes-inconsistent. For example, the

probability of heads in the two-state environment must lie between 0.2 (the probability of heads

for the X coin) and 0.4 (the probability of heads for the Y coin).20 If the mechanism output

probability of heads is 0.43 then the logic of standard probability theory offers no advice as to

what the best prediction should be; certainly one could construct ad hoc theories to rationalize

this output and generate a prediction, but from our view this output represents a failure of the

mechanism precisely because such ad hoc theories become necessary. Graphical representations of

Bayes-inconsistent outcomes (for two and eight states) is provided in Figure 2.

For each mechanism in each environment we compare the distance to the full information

posterior and count the number of periods in which no trading, mirages, or inconsistencies occur.21

20For a formal proof of this fact more generally, see Shmaya and Yariv (2007).
21We have also constructed various measures of the degree to which each failure occurs; these results are qualitatively

similar to counting the number of failures
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Period and Order Effects

Although one might expect learning and experience to generate better performance in later periods,

we do not find strong evidence for this hypothesis. Using a Wilcoxon rank sum test, we compare

the distance between the mechanism output distribution and the full information posterior for each

period t against the distance for each period s 6= t. Aggregating across all four mechanisms, we

cannot reject the hypothesis that the distances have equal distributions for any pair of periods in the

two-state experiments or in the eight-state experiments. Thus, for example, the distribution of first-

period distances is approximately the same as the distribution of last-period distances, indicating

that no significant learning takes place. This is clear from panels (A) and (B) of Figure 3.22 The

same set of tests run on each mechanism (rather than aggregating across all four mechanisms)

generates the same results.23

Since subjects participate in one mechanism for eight periods and then a second mechanism for

a subsequent eight periods, some experience from the first mechanism may spill over into the second

mechanism, creating a mechanism ordering effect in our data. Comparing the distance between

the mechanism output and the full information posterior for mechanisms run in the first eight

periods versus those run in the final eight periods reveals no discernible effect; aggregating across

all four mechanisms, Wilcoxon tests find no significant difference for both the two-state experiments

(p = 0.820) and the eight-state experiments (p = 0.850). The same tests run on each mechanism

individually also find no significant effect (all p-values are greater than 0.168). The plots in panels

(C) and (D) of Figure 3 demonstrate this result.

Since we find no significant period or ordering effects, we aggregate across all periods and both

orderings in all subsequent analyses.

The Simple Environment: Two States

Mechanism Accuracy

To determine which mechanisms are the most accurate, we perform a comparison of the mechanism

error (distance from the mechanism output to the full information posterior) between each pair of

mechanisms.24 For every given pair, we aggregate across all periods and orderings from the two-

state experiments and perform a Wilcoxon test on the resulting distributions of errors. From these

comparisons we can construct a ‘significance relation’ that ranks the four mechanisms according to

the degree of error they generate.

22The two-state and eight-state figures are scaled differently to maximize readability; recall that comparisons of
errors across these cases are not meaningful.

23Specifically, of the 112 period-versus-period tests, we find that four (or, 3.6% of the tests) are significant at the
5% level in the two-state experiments and none are significant at the 5% level in the eight-state experiments.

24Since we use a distance measure, we do not separate error caused by systematic bias and error caused by noise.
In separate tests for the simple environment, we do not reject the null hypothesis that the average signed error is
zero for each mechanism, indicating no systematic bias in the mechanisms’ output distributions.
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Figure 3: Box-and-whisker plots of the distance between the mechanism output distribution and
the full information posterior for (A) each period in the two-state experiments, (B) each period in
the eight-state experiments, (C) each mechanism ordering in the two-state experiments, and (D)
each mechanism ordering in the eight-state experiments.

Formally, we define the significance relation by A � B if mechanism A has a higher average

error than B and A ≻ B if that difference is statistically significant at the 10% level. Since ≻ is not

negatively transitive (it is possible to have A 6≻ B and B 6≻ C but A ≻ C), describing the relation

between mechanisms may require multiple statements. For example, from the pair of statements

A � B � C � D and A ≻ C � D we conclude that A has significantly higher average error

than C and D, but that A’s average error is not significantly greater than B’s and that no other

comparisons are statistically significant.

The result of the pairwise comparison procedure is reported Table 4 and the distributions

of errors for each mechanism are shown in panel (A) of Figure 4. The average error for each

mechanism is reported in the second row and second column of the table; on average the MSR
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generates the largest errors and the double auction generates the smallest errors. The p-values of

the pairwise Wilcoxon tests are reported in columns three through six and rows three through six.

No differences are significant at the 5% level, but the Market Scoring Rule generates significantly

higher error than both the poll and the double auction at the 10% level. From this, we generate

the significance statements: ‘MSR � Pari � Poll � DblAuc and MSR ≻ Poll � DblAuc’. Thus, the

MSR is the only mechanism that generates significantly higher error than any other mechanism.

In other words, these results are not particularly conclusive about which mechanism is the best (in

terms of error), but the results are clear about which mechanism is the worst.

The Wilcoxon tests in Table 4 treat each period in each session as an independent observation,

potentially biasing the results if cohort effects are present. Using Wilcoxon tests to compare the

error measures from each pair of sessions in each mechanism we find little evidence of cohort effects:

two out of 24 session-pairs have significant differences at the ten percent level (one in the double

auction and one in the poll). This is roughly the number of significant differences one should expect

under the null hypothesis of no cohort effects, so we do not reject that hypothesis. Clearly, if one

were to treat each session as a single observation the marginally significant comparisons in Table 4

would become insignificant.

If observations within a cohort can be viewed as independent (which may be valid since no period

effects are found), controlling for cohorts can strengthen the comparison between mechanisms. For

example, an ANOVA analysis treating cohorts as a nested factor within each mechanism removes the

between-cohort variability from the error data.25 With this extra statistical power the marginally

significant results in Table 4 (‘MSR ≻ Poll’ and ‘MSR ≻ DblAuc’) become significant at the 5%

level (p-values of 0.022 and 0.026, respectively). None of the other comparisons becomes significant

at the 10% level. Thus, we strengthen our conclusion that the MSR generates the largest errors in

the simple environment.

Catastrophes: No Trade

In theory, we predict no trade (or indifference to trade) in the double auction and pari-mutuel

mechanisms when agents are (weakly) risk averse. In practice (see the second row of Table 5),

we observe trade in all 32 periods of the double auction, but no trade in four of the 32 periods

(12.5%) of the pari-mutuel mechanism, all in Session 3. Despite the fact that it is subsidized—

thus circumventing the no-trade issue in theory—we do observe one period of no trade in the

MSR. Since all instances of no trade occur in a single session for both mechanism we cannot

25Because there are no-trade periods this becomes an unbalanced nested two-factor design. We test for pairwise
mechanism effects by running dummy-variable regressions, comparing the error sum-of-squares of a full model with
all mechanism and cohort dummies included to the error sum-of-squares of a restricted model where two mechanisms’
effects are constrained to be equal. An F -test then determines whether the full model gains significant explanatory
power over the restricted model, and therefore whether or not the true mechanism effects are equal. See Neter et al.
(1996, pp. 1138–1141) for details. Diagnostics of residuals suggest that the required parametric assumptions are
reasonably satisfied.
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2 States Avg. Distance Dbl Auction Mkt Scoring Rule Pari-mutuel Poll

Avg. Distance - 0.131 0.210 0.148 0.133

Dbl Auction 0.131 - 0.092 0.646 0.663
Mkt Scoring Rule 0.210 - - 0.225 0.098

Pari-mutuel 0.148 - - - 0.519
Poll 0.133 - - - -

10% Significance Ordering: MSR � Pari � Poll � DblAuc
and MSR ≻ Poll � DblAuc

Table 4: p-values of mechanism-by-mechanism Wilcoxon tests on the distance to the full information
posterior for the two-state experiments. Italicized entries are significant at the 10% level.
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Figure 4: Box-and-whisker plots of the distance between the mechanism output distribution and
the full information posterior for each mechanism in (A) the two-state experiments, and (B) the
eight-state experiments.

disentangle mechanism effects from session/cohort effects and therefore cannot employ proper panel

data techniques to compare the rate of no-trade between mechanisms. Using a simple two-sample

binomial test (which incorrectly assumes independence of no-trade periods) as a rough guide, we

conclude that the pari-mutuel mechanism generates no-trade outcomes more frequently than the

double auction and poll (both with one-tailed p-values of 0.034) but not the MSR (p-value: 0.118).

We therefore suggest that the pari-mutuel is more vulnerable to no-trade than either the double

auction or poll.

Intuitively, we conjecture that subjects are prone to trade, whether rational or not, in the more

familiar double auction mechanism and are prone to confusion and, consequently, inactivity in the

unfamiliar and mathematically complex Market Scoring Rule mechanism. As for the pari-mutuel

mechanism, debriefing discussions with subjects indicated that several believed that first movers

would be disadvantaged in this zero-sum game since placing a wager may reveal valuable private
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Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
(S5,S6,S7,S8) Tot (S3,S4,S1,S2) Tot (S1,S2,S3,S4) Tot (S7,S8,S5,S6) Tot

No Trade (0,0,0,0) 0 (0,1,0,0) 1 (0,0,4,0) 4 (0,0,0,0) 0
Mirage (4,4,2,3) 13 (3,2,3,5) 13 (2,4,0,3) 9 (2,3,2,3) 10

Bayes-Inconsistent (2,0,2,1) 5 (3,1,3,0) 7 (2,2,2,0) 6 (3,3,1,4) 11
Bayes-Inc. Mirage (0,0,0,0) 0 (1,0,0,0) 1 (0,1,0,0) 1 (2,1,0,0) 3

None (2,4,4,4) 14 (3,4,2,3) 12 (4,3,2,5) 14 (5,3,5,1) 14

Table 5: Number of periods in each session (out of 8) and number of periods total (out of 32) in
which each type of catastrophic failure occurs in the two-state experiments.

information, allowing competitors to gain at the first mover’s expense.26

Catastrophes: Mirages

The frequency of mirages for the two-state experiments is reported in the third row of Table 5.

Although all four mechanisms generate a substantial frequency of mirages (ranging from 31% to

44%), the differences between mechanisms not statistically significant in either simple binomial

tests or in a random effects probit model, which controls for cohort effects. Furthermore, several

periods of the pari-mutuel and poll had output distributions equal to the prior; if these periods are

also counted as mirages the mechanisms perform very similarly by this measure (with 13, 14, 15,

and 13 mirages, respectively).

Catastrophes: Inconsistencies

The fourth row of Table 5 displays the number of periods in which Bayes-inconsistent outcomes

occur in the two-state experiments.27 Clearly the poll is the most frequent; using a probit random

effects model we conclude that the poll generates Bayes-inconsistent outcomes significantly (at

the 10% level) more frequently than the double auction (p-value of 0.084). Thus, our significance

statement regarding Bayes-inconsistency is ‘Poll � MSR � Pari � DblAuc and Poll ≻ DlbAuc’.

Conditional on observing a Bayes-inconsistent outcome, the average distance between h and the

convex hull ([0.2, 0.4]) is 0.024, 0.171, 0.106, and 0.052 for the double auction, MSR, pari-mutuel,

and poll, respectively. Thus, the ‘magnitude’ of the Bayes-inconsistency in the poll is less than in the

MSR or pari-mutuel, though it is difficult to interpret this observation since all Bayes-inconsistent

outcomes lead to an inference failure, regardless of their magnitude.

26In several periods we do observe ‘meaningless’ trade where a trader submits a wager in the final second before
the market closes. If an individual is the only trader to place a wager in a pari-mutuel mechanism and does so at
the last second, he faces no risk as long as he owns at least one of each security since he is effectively betting against
himself. Thus, these trades are not informative (nor financially consequential) and are discarded from the analysis.

27We do find that, across all mechanisms, Bayes-inconsistent outcomes are significantly more likely to occur in the
first period. No other period effects have been observed.

22

Page 22 of 37Management Science



Conditional on observing a Bayes-inconsistent output, the poll and pari-mutuel are more likely

to generate inconsistencies with hT (H) > 0.4 than with hT (H) < 0.2; all six of the pari-mutuel’s

Bayes-inconsistencies and eight of the poll’s 11 Bayes-inconsistencies have hT (H) > 0.4. The double

auction and MSR split the two types of errors evenly, with three of five periods giving hT (H) > 0.4

for the double auction and four of seven giving hT (H) > 0.4 for the MSR. Thus, the pari-mutuel

and poll are somewhat handicapped by a tendency towards a uniform distribution, as would be

predicted by the well-documented favorite-longshot bias (see Ali, 1977, e.g.).28

Summary

In three of our four measures (error, no trade, and Bayes-inconsistencies) we found one mechanism

to be uniquely bad and the others to be roughly equivalent. Specifically, the MSR generates the

most error, the pari-mutuel generates the most no-trade periods, and the poll is the most frequently

Bayes-inconsistent. The four mechanisms are roughly equal in the frequency with which mirages

occur. The only mechanism that performed well in all measures (or, did not perform poorly in any

one measure) is the double auction mechanism. A summary of the results appears in columns two

through five of Table 11.

The Complex Environment: Eight States

Mechanism Accuracy

As with the two-state experiments, we measure a mechanism’s error as the Euclidean (l2) distance

between the mechanism output distribution and the full information posterior. The distribution

of errors for each mechanism is compared against that of each other mechanism using a Wilcoxon

rank sum test. This pairwise comparison procedure generates a significance ordering that ranks

the mechanisms by their average errors.29 The result of this procedure is reported in Table 6. The

accuracy results for the eight-state experiments can be summarized by the significance statement

‘DblAuc ≻ Pari ≻ MSR � Poll’, which indicates that the double auction is uniquely the worst

mechanism (according to this error measure), the pari-mutuel is uniquely the second-worst, and

the MSR and poll generate the lowest errors on average, with no significant difference between

them.

As in the two-state environment, these results may be biased by the presence of cohort effects.

Wilcoxon tests on each pair of sessions in each mechanism find eight out of 24 session-pairs with

significant differences in error at the 10% level (three each in the double auction and MSR and one

28We thank an anonymous referee for suggesting we explore favorite-longshot biases in our data.
29In contrast to the results in the simple environment and based on a simple counting measure, we do find some

evidence that prices are biased in favor of long-shots in the complex environment. This holds for all mechanisms, but
is strongest for the double auction and poll. We believe that this finding likely confounds a number of sources of error,
and we do not claim that we are able to identify this as a major cause of the poor performance of the mechanisms.
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8 States Avg. Distance Dbl Auction Mkt Scoring Rule Pari-mutuel Poll

Avg. Distance - 0.696 0.527 0.605 0.418

Dbl Auction 0.696 - 0.002 0.093 <0.001
Mkt Scoring Rule 0.527 - - 0.083 0.324

Pari-mutuel 0.605 - - - 0.001
Poll 0.418 - - - -

10% Significance Ordering: DblAuc ≻ Pari ≻ MSR � Poll

Table 6: p-values of mechanism-by-mechanism Wilcoxon tests on the distance to the full information
posterior for the eight-state experiments. Italicized (bold-faced) entries are significant at the 10%
(5%) level.

each in the pari-mutuel and poll). To account for these cohort effects we take a very conservative

approach and view the average error distance of each session as a single observation, reducing our

sample size to only four observations per mechanism.30 Despite this dramatic loss in testing power

we still achieve two significant results: the poll’s average error is significantly lower than both

the double auction (p-value: 0.0286) and the pari-mutuel (p-value: 0.0571). This occurs because

the highest error of the four poll sessions is still lower than the lowest error of the four double

auction sessions and the lowest error of the four pari-mutuel sessions.31 No other comparisons of

session-level errors are significant at the 10% level.

Controlling for between-cohort variability using a nested ANOVA analysis alters the significance

results slightly; the significance statements from that analysis are ‘DA � Pari � MSR ≻ Poll’ and

‘DA ≻ MSR’, and all significant results are significant at the 5% level. Thus, the poll is significantly

better than all three competing mechanisms and the double auction is significantly worse than all

but the pari-mutuel.

Catastrophes: No Trade

In the eight-state experiments no-trade periods were observed only in the pari-mutuel mechanism.

One group of subjects traded in none of the eight periods and another group failed to trade in their

fifth period. As with the two-state data, panel data techniques are unable to reliably disentangle

mechanism effects from session effects since nearly all incidences of no-trade occur in a single session.

The qualitative evidence, however, is sufficiently suggestive to lead us to conclude that the pari-

mutuel mechanism is more susceptible to no-trade than the other three mechanisms. This conclusion

is easily verified by binomial tests that incorrectly assume independence across all periods.

30The pari-mutuel has one session with no trade, leaving only three session-level observations.
31The difference in p-values between these two comparisons stems only from the fact that the pari-mutuel has one

entire session with no trade and therefore only three session-level observations available.
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Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
(S5,S6,S7,S8) Tot (S3,S4,S1,S2) Tot (S1,S2,S3,S4) Tot (S7,S8,S5,S6) Tot

No Trade (0,0,0,0) 0 (0,0,0,0) 0 (0,0,8,1) 9 (0,0,0,0) 0
Mirage (3,1,4,4) 12 (1,1,2,3) 7 (3,1,0,3) 7 (0,1,2,0) 3

None (5,7,4,4) 20 (7,7,6,5) 25 (5,7,0,4) 16 (8,7,6,8) 29

Table 7: Number of periods in each session (out of 8) and number of periods total (out of 32) in
which each type of catastrophic failure occurs in the eight-state experiments. Every mechanism is
Bayes-inconsistent in every period.

Catastrophes: Mirages

Recall that we define a mirage to be a mechanism output distribution that lies in an opposite

direction from the prior as the full information posterior. Mathematically, this occurs when (h −

p0) · (pFI − p0) < 0; this is demonstrated in panel (B) of Figure 1.

Looking at the frequency of mirages (see Table 7), the double auction is most prone to mirage

outcomes while the poll is the least prone. In a probit random effects test the double auction

is significantly worse than the poll (p-value: 0.009) but insignificantly worse than the other two

mechanisms.

Comparing the angles between the vectors (h−p0) and (pFI−p0) and applying pairwise Wilcoxon

tests (see Table 8), we see that the double auction is uniquely the worst mechanism by this measure

because its average output distribution points in a direction farthest from the full-information

posterior. In fact, its average angle is nearly 90 degrees, indicating that the mechanism provides

little to no information that is not already contained in the prior. In contrast, the other mechanisms

do, on average, move toward the full information posterior, indicating that all mechanisms other

than the double auction do provide more information than the prior, or the prior plus random

noise.

A third way to measure the incidence of mirages is simply to count the number of dimensions

of (h−p0) that have the same sign as the corresponding dimension of (pFI −p0), excluding the first

and last dimension since, in theory, they should not change. Table 9 reports the p-values of the

pairwise Wilcoxon tests on the number of dimensions. The results are in line with the other two

measures; the double auction is uniquely the most prone to mirages and the other three mechanisms

do not significantly differ in the frequency or magnitude of observed mirages.

Catastrophes: Bayes-Inconsistency

Recall that an output distribution is labeled ‘Bayes-inconsistent’ if it does not lie in the convex

hull of the limit posteriors. In the eight-state case, distributions live in R
8 but since the first

and last dimensions should never differ from the prior, the convex hull lives in the six-dimensional

subspace where those two dimensions are fixed at the prior level. Thus, an output distribution is
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8 States Avg Angle Dbl Auction Mkt Scoring Rule Pari-mutuel Poll

Average Angle - 89.23 66.12 74.68 69.07

Dbl Auction 89.23 - <0.001 0.011 <0.001
Mkt Scoring Rule 66.12 - - 0.180 0.773

Pari-mutuel 74.68 - - - 0.286
Poll 69.07 - - - -

10% Significance Ordering: MSR � Poll � Pari ≻ DblAuc

Table 8: p-values of mechanism-by-mechanism Wilcoxon tests comparing the the angle (in degrees)
between the mechanism output (h−p0) and the full information posterior (pFI −p0). Larger values
imply more error.

8 States Avg No. Dbl Auction Mkt Scoring Rule Pari-mutuel Poll

Average No. Dim. - 2.69 3.69 3.70 3.97

Dbl Auction 2.69 - 0.002 0.003 <0.001
Mkt Scoring Rule 3.69 - - 0.798 0.239

Pari-mutuel 3.70 - - - 0.467
Poll 3.97 - - - -

10% Significance Ordering: Poll � Pari � MSR ≻ DblAuc

Table 9: p-values of mechanism-by-mechanism Wilcoxon tests comparing the number of dimensions
(out of 6) of the mechanism output that move in the same direction (from the prior) as the full
information posterior.

automatically ‘Bayes-inconsistent’ if either the first or last dimension differs from the prior. See

Figure 2 for a simplified representation of this issue. In practice, Bayes-inconsistency occurs in every

period under every mechanism in our eight-state experiments precisely because these first and last

dimensions never perfectly match the prior probabilities, so indicating Bayes-inconsistency with a

binary indicator variable is not informative. Therefore, we measure the ‘degree’ of inconsistency as

the distance between the output distribution and the convex hull. Using pairwise Wilcoxon tests

(see table 10), we find that neither the MSR nor the poll have significantly greater median distances

than any other mechanism, and that the double auction and pari-mutuel do have significantly

greater median distances than at least one other mechanism. Thus, the MSR and the poll are less

prone to large deviations from the convex hull.

An alternative way to measure the propensity for Bayes-inconsistency is to count the number

of periods in which the distance between the output distribution and the convex hull is within ǫ for

each ǫ greater than zero. The resulting graph of frequencies versus ǫ for each mechanism appears

in Figure 5. The MSR and the poll generate output distributions within ǫ of the convex hull most

frequently when ǫ is small. As ǫ is increased, however, the MSR moves from most frequent to least

frequent and the pari-mutuel moves from second-least frequent to most frequent. In other words,

the MSR output tends to lie either very close to the convex hull or very far, while the pari-mutuel
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8 States Avg Dist Dbl Auction Mkt Scoring Rule Pari-mutuel Poll

Average Distance - 0.447 0.362 0.398 0.312

Dbl Auction 0.447 - 0.001 0.107 <0.001
Mkt Scoring Rule 0.362 - - 0.180 0.257

Pari-mutuel 0.398 - - - 0.008
Poll 0.312 - - - -

10% Significance Ordering: DblAuc � Pari � MSR � Poll
DblAuc ≻ MSR � Poll
DblAuc � Pari ≻ Poll

Table 10: p-values of mechanism-by-mechanism Wilcoxon tests comparing the severity of Bayes-
inconsistency, as measured by the distance between the mechanism output distribution and the
convex hull of the limit posteriors.

output consistently lies an intermediate distance from the convex hull. Thus, a market observer who

is concerned about extreme levels of Bayes-inconsistency should prefer the pari-mutuel mechanism

over the MSR in the eight-state environment. As for the double auction mechanism, however, the

results are poor in either measure; its average distance from the convex hull is the highest and the

frequency with which it lands within ǫ of the convex hull is typically the lowest or second-lowest

among the four mechanisms.

Summary

As with the two state case, we found one or two mechanisms to be uniquely bad according to

each of our four measures (error, no trade, mirages, and Bayes-inconsistency), though the poorly-

performing mechanism varies with the measure. Specifically, the double auction and pari-mutuel

generate larger errors, the pari-mutuel is the most prone to no trade, the double auction creates

the most mirages, and the double auction and pari-mutuel generate the greatest amount of Bayes-

inconsistency. The two mechanisms that did not perform poorly in any of the four measures are

the poll and the MSR. Between these two the poll appears to outperform the MSR, though at

statistically insignificant levels. The results for the eight-state experiments are summarized in the

last four columns of Table 11.

5 Five Observations

The results indicate that the poll and (to a somewhat lesser extent) the MSR perform well and

the double auction poorly in the more complex environment. This raises the deeper question of

why this occurs; what features of the poll and MSR make them successful that are not shared by

the double auction? Based on our analysis of the data we state five observations about these three

mechanisms that we believe are primarily responsible for the performance differences.
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Figure 5: Frequency of periods (with trade) in which Bayes-inconsistency is less than ǫ.

2 States 8 States
Summary Error No Trade Mirage Inconsistent Error No Trade Mirage Inconsistent

Dbl Auction X X X X × X × ×
M.S.R. ×∗

X X X X X X X

Pari-mutuel X ×∗
X X × ×∗

X ×
Poll X X X ×∗

X X X X

Table 11: Summary of results. A X indicates the mechanism was not significantly out-performed
by some other mechanism in that measure and an × indicates that it was. An ×∗ denotes either
marginal significance (all p-values less than but close to 0.10) or cases where proper statistical tests
were unavailable.

Observation 1 Preferences are aligned in the poll, so traders have no incentive to misrepresent

their information, while truth-telling in the MSR is weakly incentive compatible.

A subject misrepresents his private information when he takes an action intended to send a

false signal of his private information. Misrepresentation can interfere with the performance of a

mechanism by adding noise to the public signals sent by a subjects actions. While the potential

for misrepresentation in equilibrium is a difficult question, it is clear that misrepresentation might

present profit opportunities in mechanisms where incentives are not aligned. In the poll, however, a

subject’s payoff will generally increase in the quality of the information available to other subjects.

Thus, the poll may be less subject to problems with misrepresentation. In the MSR a subject may

have an incentive to misrepresent early, but her final announcement (if she believes it to be her
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Mechanism No. of Misrepresentations

Dbl Auction 14
MSR 5
Parimutuel 12
Poll 3

Table 12: Number of observations of misrepresentation by mechanism

final announcement) should be truth-telling; see the discussion of the MSR at the end of Section 2

above.

We construct a rough measure of misrepresentation as follows. Recall that each mechanism

generates a sequence of distributions {ht}
T
t=0. An action at time t is said to move the posterior

toward the full information posterior if ‖ht − pF ‖ ≤ ‖ht−1 − pF‖; otherwise, the action moves the

posterior away.32 A subject is identified as a misrepresenter in a period if his moves include at

least one move toward the full information posterior and at least one move away, and all moves

away precede all moves toward. We have 96 opportunities to observe misrepresentation for each

mechanism (3 subjects each in a total of 32 periods). The number of misrepresentations in each

mechanism are presented in Table 12. We observe the fewest instances of misrepresentation in the

poll and MSR. This is consistent both with the aligned incentives in the poll and the weak incentive

compatibility built into the MSR.

Observation 2 Traders have an incentive to participate in both the poll and the MSR since they

are subsidized.

Excluding the value of initial endowments, the double auction is a zero-sum game. A trader

who does not participate earns her expected value of participating and, according to the no-trade

theorem argument, she strictly prefers non-participation if rationality is common knowledge and

she is risk averse. Even if rationality is not known only those traders who expect to perform better

than average will prefer to participate. Although trade occurs in every period in our data, there

are four periods (of sixty-four) where one of the three traders abstains from trading.

In the poll, however, there is no benefit to abstention; any trader can (weakly) improve the

group’s average report (relative to his posterior beliefs) by appropriately incorporating his private

information into his own final report. Improving the final average report improves the payoff of

everyone in the group.33 Similarly, the MSR involves a subsidy when participants perform well as

a group

32For the poll, actions are ordinal and we adopt the convention that t ∈ {0, 2, 4, 6, 8} represent individual reports
and t ∈ {1, 3, 5, 7, 9} represent aggregate reports. ht is therefore not unique when t is even. The different timing
structure for the poll makes formal statistical comparisons difficult.

33The average payoff per trader per period in the poll is 25.9 cents and 35.0 cents for the two-state and eight-state
treatments, respectively.
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Observation 3 Traders in the poll must submit entire probability distributions, preventing them

from focusing on a small number of securities.

It appears that market thinness in the eight-state world prevents the double auction from

aggregating information properly. We find that there are only 2.60 transactions per minute across

all markets in the eight-state environment, compared to 5.00 transactions per minute in the two-

state environment; traders are trading half as frequently in the eight-state environment despite the

fact that there are four times as many markets. Interestingly, total volume per minute is much

higher in the eight-state environment (14.47 units per minute compared to 6.48 units per minute

in the two-state environment), indicating that traders in the eight-state environment are making a

small number of large transactions. Trades in the eight-state environment tend to focus on a small

number of securities. Averaging across the four double auction sessions, trade on the two most

active securities accounted for 46 percent of the transactions while trade on the two least active

securities accounted for only 8 percent of the transactions.34

We conjecture that subjects focusing on a small number of securities indicates that attention is

a constraint which binds in mechanisms that require separate focus on each event or security. In

the double auction subjects must analyze the market for each security separately. Given bounded

attention, subjects are likely to focus or coordinate on a small number of securities, forgoing profits

on other securities. Thus, we should expect some market prices to be far from equilibrated. To

examine this conjecture we consider the states TTT and HHH, whose posterior probabilities equal

the prior probabilities of 24/75 and 4/75, respectively, because the ordering of the coins obviously

does not affect the probability of these two states. If market prices are far from these values then

profit opportunities may exist in these markets. In fact we observe that the average distance between

the final price and the prior probability is 13 percent for TTT and 7.6 percent for HHH. Both

of these distances are significantly greater than the distances for any other mechanism (Wilcoxon

p-values of < 0.001).

Observation 4 The poll averages the elicited beliefs, so the effects of a single aberrant trader are

mitigated.

Our final observation is that the poll performs relatively well compared to the other mechanisms

due to lessened sensitivity to erroneous last actions. To identify the frequency of large errors in

individual reports, we first calculate the average error in final predictions across all the mechanism.

Using the normalized lρ, the size of average errors in the 2 state experiments is 0.155; in the 8 state

experiments it is 0.5996. We define a period with far-off last report as one where the last action

implies an individual posterior with a larger-than average prediction error. As the poll requires

all three individuals to submit their report simultaneously, we use the report with the largest

34There does not appear to be a systematic trend in which securities were traded the most or least frequently.
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2 States 8 States
Last Output Last Output

Mechanism Report Distribution Report Distribution

Dbl Auction 11 11 24 24
Mkt Scoring Rule 18 18 9 9

Pari-mutuel 11 11 9 9
Poll 28 8 21 8

Table 13: Number of periods with far-off last report and final prediction.

prediction error as the last report. The number of periods with far-off reports in each mechanism

are presented in Table 13.

In the double auction, parimutuel, and MSR, this last report has a direct effect on the mech-

anism’s output. The number of periods with a far-off prediction—defined as a prediction with

larger-than-average error—is necessarily the same as the number of periods with far-off reports.

However, the poll balances out this errant last report by averaging it with the other two players’

reports.

Despite the large numbers of far-off last reports, the poll produces the fewest instances of far-off

final predictions. This is consistent with our claim that averaging in the poll makes it less sensitive

to individual errors at end of the period. Note that if the players’ final reports are derived from

the same distribution, Jensen’s inequality and the convexity of our error measure will imply lower

prediction error for the poll. Another interesting observation from Table 13 is that the number of

far-off last reports in the poll is among the highest compared to other mechanisms, which point

to the possibility of players strategically using the averaging mechanism to offset expected error in

other players’ reports.

The risk that a far-off last report can unduly influence the outcome of the continuous mechanisms

suggests that smoothing over the actions near the end of the period might provide an improvement

over focusing exclusively on the final outcome of the mechanism. To evaluate this possibility, we

average over the outcomes implied by the final 20% and 50% of actions in each of these mechanisms.

For both the double auction and the parimutuel, this has no appreciable effect on the performance

of the mechanism, as measured by average distance. For the MSR, however, smoothing over the

last 20% of moves in the simple environment and smoothing over the last 50% of moves in the

complex environment bring substantial improvements in performance. In the simple environment,

the average error of the MSR drops from 0.210 to 0.119, while in the complex case the error

drops from 0.527 to 0.411. In both of these cases, the alternative degree of smoothing provides no

appreciable improvement in performance. While statistical comparisons between these smoothed

outputs and the original outputs is inappropriate due to concerns about data mining, we note that

the smoothed MSR produces the smallest average error for the simple environment, though this
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error would not have been significantly different than the errors in any of the other mechanisms.

In the complex environment, the errors for the smoothed MSR would have made that mechanism

statistically indistinguishable from the poll in the sense that both the poll and the smoothed MSR

would outperform the other mechanisms at the same significance level. We also note, however, that

the optimal degree of smoothing seems to vary with the complexity of the environment, leaving

no obvious recommendation for a better means to evaluate the output of the MSR. Regardless,

we do believe these results suggest the possibility of designing a mechanism that exploits the weak

incentive compatibility of the MSR while also generating an output that is more robust to the

behavioral characteristics identified here.

Observation 5 Transactions in the double auction are bilateral; in all other mechanisms transac-

tions are executed unilaterally. The double auction is therefore more labor-intensive.

Since a transaction in the double auction requires the active involvement of two parties, it is

simply a more labor-intensive mechanism. With a small number of traders whose time is either

constrained or costly it is reasonable to expect that information aggregation will be inhibited by the

fact that subjects must seek out trading partners in every transaction. By contrast, the poll simply

requires that each trader send a fixed number of discrete messages, and the market scoring rule and

pari-mutuel effectively use market makers that allow traders to act without coordinating with other

traders. An analysis of transaction times in the double auction reveals that traders may well have

been time-constrained; there is no perceptible change in transaction volumes toward the end of the

five-minute periods. Given enough time, the mechanism’s performance may significantly improve.

In many field applications, however, labor cost and time constraints are very real issues that may

hinder the double auction’s ability to aggregate information and generate useful predictions.

6 Discussion

In comparing these four mechanisms (the double auction, the market scoring rule, the pari-mutuel,

and the poll), we find that the performance of the mechanisms is significantly affected by the

complexity of the environment. In particular, the double auction mechanism appears to perform

relatively better when the number of states is small relative to the number of traders and the infer-

ence problem of inverting beliefs back into received signals and then converting aggregated signals

into an aggregated belief is relatively easy. When the environment becomes more complicated,

both in the number of states and in the difficulty of the inference problem, the performance of the

double auction market breaks down and other mechanisms emerge as superior. In particular, the

iterative poll is the only mechanism in our experiment that was not outperformed by some other

mechanism in any of the four measures of error considered.

Identifying which mechanisms perform well in given environments is only the first step in this

research. The most compelling line of inquiry is into the underlying reasons for a mechanism to

32

Page 32 of 37Management Science



No. of Participants 3 7 12

Dbl Auction 0.243 0.198 0.016
MSR 0.045 0.001 0.000

Pari-mutuel 0.158 0.019 0.006
Poll 0.046 0.004 0.001

Table 14: Average errors (using KL distance) from the Grus-Ledyard pilot data.

succeed or fail in a given environment. For example, we observe that the failure of the double auction

in the eight-state experiments is due in part to the increased ratio of the number of securities to the

number of traders: the ‘thin markets’ problem. As the number of securities exceeds the number of

traders, agents apparently focus their limited attention on a small subset of the securities during

the trading period. This creates an additional coordination problem as traders seek to focus their

attention on markets in which trading is currently most profitable, perhaps due to the trading

volume in that market and the private information of the given trader. If some securities are

ignored and receive no trades then information aggregation is necessarily incomplete.

One open question is how these mechanisms would perform if the number of traders were

increased beyond three. In previously-unpublished pilot experiments, Joel Grus and John Ledyard

(see Ledyard, 2005) compare the same four mechanisms (double auction, MSR, pari-mutuel, and

poll) in a two-state environment similar to ours using three, seven, and twelve participants.35 The

Grus-Ledyard experiments do not include the eight state design. Agents participate in the same

group of n subjects for the entire experiment. Each group participates in three mechanisms for

eight periods each, as opposed to two mechanisms per group in our design. Their measure of error

uses the Kullback-Leibler information criterion (“KL distance”) instead of the Euclidean distance

(Kullback and Leibler, 1951; this follows Ledyard et al., 2009), though in our data these two

measures are highly correlated. The average KL distances are summarized in Table 14.

Unsurprisingly, each mechanism becomes more accurate as the number of traders increases.36

The absolute improvement is larger for those mechanisms with larger errors (double auction and

pari-mutuel), but the percentage improvement per additional trader is 10.4%, 11.1%, 10.7%, and

10.9% for the double auction, MSR, pari-mutuel, and poll, respectively.37 This suggests that, for

the simple two-state environment, increases in the number of traders will have little effect on the

relative performance of these mechanisms. Whether this similarity extends to the more complex

35The major differences between their design and ours are the number of subjects, f(X) = f(Y ) = 1/2, f(H |X) =
0.2 and f(H |Y ) = 0.8, and subjects always see two sample flips for their private information. Their periods also lasted
five minutes, though their poll with twelve participants ran through five iterations instead of three. The seven-subject
sessions of the pari-mutuel and MSR actually had eight subjects.

36This improvement in accuracy is also correlated with increases in the number of trades per minute per subject.
37The Grus-Ledyard data indicates that in the two-state case the double auction gains less when the number of

traders is still small and more as the number becomes larger. Data on the effect of increasing cohort size on the
eight-state environment is unavailable.
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environment is an open question, though the success of fairly complex double auction prediction

markets with many traders (such as TradeSports) suggests that the double auction eventually does

benefit differentially from increased thickness.38

Many other open questions remain. Fine details such as the complexity of the information

structure could be altered and results compared. New mechanisms or perturbed versions of these

mechanisms could be compared in the laboratory. The context of various business environments

could be overlaid on our sterile laboratory environment to explore particular real-world implemen-

tations. On the theoretical front, little is known about the equilibrium and manipulability of these

mechanisms played by fully-rational agents, let alone boundedly-rational agents prone to various

biases and cognitive errors.

Our larger goal with this research is to help develop the practice of behavioral mechanism design,

where behavioral insights inform both the design of mechanisms for the immediate future and the

modification of theories that can be used to find optimal mechanisms for practical applications into

the future.
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